관련 논문
*정책원 미소장 자료이며 관련 논문 소개 게시판입니다. 게시물 관련링크를 눌러 소속기관에서 열람가능한지 확인해주시기 바랍니다. lib@nibp.kr
글 수 60
발행년 : 2016 
구분 : 학위논문 
학술지명 : 과학기술연합대학원대학교 : 의공학 (박사) 
관련링크 : http://www.riss.kr/link?id=T14131488 

재생의학 기술 개발을 위한 세포접착 제어를 통한 중간엽 줄기세포의 기능 조절 연구
: Modulation of mesenchymal stem cell function by control of cell adhesion mechanism for technical development of regeneration medicine



 
저자 강정미
형태사항 ; 26 cm
일반주기 지도교수: 김상헌
학위논문사항 Thesis(doctoral)-- 과학기술연합대학원대학교 : 의공학(BiomedicalEngineering) 2016. 8
발행국 대한민국
언어 영어
출판년 2016
소장기관 과학기술연합대학원대학교


 
초록
This study fabricates novel biofunctional matrices (MBP fusion protein surfaces) with exact cell-matrix adhesion mechanisms that are mediated by heparin sulfate proteoglycan (HSPG) as the engineered extracellular microenvironments. MBP-fused proteins are designed to form cell adhesion matrices for mesenchymal stem cells (hMSCs), in order to examine cellular responses related to cell adhesion signaling. Primary approach is based on assessing cell adhesion behavior and the differentiation capacities that control cell adhesion mechanisms. In addition, MBP fusion proteins are used to promote a three-dimensional (3D) clustering of hMSCs by weakening cell-matrix adhesion for tissue regeneration purpose. This study is composed of three segments, wherein the design and characterization of MBP-fused protein surfaces, the control of hMSC phenotype and differentiation, and a three-dimensional (3D) clustering of hMSCs on a MBP-fused protein and their application are investigated consecutively. 1. In this study, anchor various bioactive proteins (basic FGF (bFGF), VEGF, HBD) linked to maltose-binding protein (MBP) was designed as a biofunctional matrix for cell adhesion. The maltose-binding protein (MBP), which possesses a large number of exposed hydrophobic zones, can be used as a link for the immobilization of growth factors. MBP-fused proteins were immobilized on polystyrene (PS) surfaces by spontaneous adsorption. I analyzed XPS spectra and AFM images to determine the binding energy and topography, respectively, of the MBP-fusion protein-coated surfaces. The adsorption of MBP-fused proteins on PS surfaces was investigated using the nitrogen 1s (N1s) signal intensity in the XPS spectra, a similar approach had been applied to PS surfaces with adsorbed albumin and AFM was used to characterize the topology of surfaces coated with MBP-fusion protein. The amount of MBP-fused proteins immobilized on the PS surface increased with increasing protein concentration. In addition, I sought to determine the adhesive properties of human adipose-derived stem cell (hASC) for extracellular matrix proteins. The adhesion of hASCs to MBP-bFGF immobilized on a PS surface (PS-MBP-bFGF) was inhibited by heparin. Integrin signaling and cell spreading of hASC on PS-MBP-bFGF were down-regulated compared with those on fibronectin-coated surfaces or tissue culture polystyrene (TCP). hASC differentiated into adipocytes, which stained positive for lipid vacuoles with Oil Red, more readily on PS-MBP-bFGF than on TCP. In contrast, hASC hardly differentiated into osteoblast on PS-MBP-bFGF or on TCP. These results suggest that the mechanism of hASC adhesion to PS-MBP-bFGF is mediated by a specific interaction between bFGF and heparin, and that the adhesion mechanism might provide an insight into the design of biomaterials to control the fate of stem cells. 2. Control of cell-matrix adhesion has become an important issue in the regulation of stem cell function. In this study, PS-MBP-bFGF was applied as an artificial matrix to regulate integrin-mediated signaling. I sought to characterize human bone marrow mesenchymal stem cell (hBMSC) behavior in response to two different mechanisms of cell adhesion; (i) bFGF-heparan sulphate proteoglycan (HSPG)-mediated adhesion vs. (ii) fibronectin (FN)-integrin-mediated adhesion. Heparin inhibited hBMSC adhesion to PS-MBP-bFGF but not to FN-coated surface. The phosphorylation of focal adhesion kinase, cytoskeletal re-organisation, and cell proliferation were restricted in hBMSC adhering to PS-MBP-bFGF compared to FN-coated surface. Expression of MSC markers, such as CD105, CD90 and CD166, decreased in hBMSC expanded on PS-MBP-bFGF compared to expression in cells expanded on FN-coated surface. hBMSC that were expanded on FN-coated surface differentiated into osteogenic and adipogenic cells more readily than those that were expanded on PS-MBP-bFGF. Furthermore, we characterised the N-linked glycan structures of hBMSC depending on the cell adhesion mechanism using mass spectrometry (MS)-based quantitative techniques. MS analysis revealed that 2,3-sialylated glycans, a potential marker of stem cell function, were more abundant on hBMSC expanded on FN-coated surface than on those expanded on PS-MBP-bFGF. Thus, the differentiation potential of hBMSC is controlled by the type of adhesion substrate that might provide an idea for the design of biomaterials to control stem cell fate. Elucidation of the glycan structure on the cell membrane may help characterize hBMSC function. In addition, it is essential to characterize the biological properties of MSC populations to maintain quality specifications and control in regenerative medicine. In this study, I also characterize cell adhesion dependent cellular behaviors of hASCs and hBMSCs. I used a PS-MBP-bFGF and a FN-coated surface to restrict and support, respectively, integrin-mediated adhesion. The cells adhered to PS-MBP-bFGF exhibited restricted actin cytoskeleton organization and focal adhesion kinase phosphorylation. The hASCs and hBMSCs exhibited different cytoplasmic projection morphologies on PS-MBP-bFGF. Both hASCs and hBMSCs differentiated more dominantly into osteogenic cells on FN than on PS-MBP-bFGF. In contrast, hASCs differentiated more dominantly into adipogenic cells on PS-MBP-bFGF than on FN, whereas hBMSCs differentiated predominantly into adipogenic cells on FN. The results indicate that hASCs exhibit a competitive differentiation potential (osteogenesis vs. adipogenesis) that depends on the cell adhesion matrix, whereas hBMSCs exhibit both adipogenesis and osteogenesis in integrin-mediated adhesion and thus hBMSCs have non-competitive differentiation potential. I suggest that our approach has potential for development of classification models that use biofunctional materials to classify hMSCs by characterizing their adhesion behaviors and differentiation potentials. 3. hMSCs are an attractive cell source in regenerative

 
목차
I . Fabrication and Characterization of Novel Bio-functional Matrix and Cellular Analysis during Adhesion and Differentiation
1. Background
2. Materials and methods
2.1. Materials
2.2. Expression of recombinant MBP fusion proteins 
2.3. Preparation of cell adhesion substrates
2.4. Characterization of PS surfaces coated with MBP-fused proteins
2.5. Isolation and culture of human adipose-derived stem cells
2.6. Binding of biotinylated heparin to MBP fusion protein surfaces
2.7. hASC adhesion assay
2.8. Adipogenesis and osteogenesis of hASCs on PS-MBP-bFGF
2.9. Quantitative analysis of differentiation
2.10. Statistical analysis
3. Results
3.1. Preparation of MBP fusion proteins
3.2. Characterization of recombinant MBP fusion protein surfaces
3.3. Adhesion mechanism of hASCs on PS-MBP-bFGF
3.4. hASCs differentiation on PS-MBP-bFGF
4. Discussion 

II. Bio-functional Matrices Characterize Cell Function (Signaling,Morphology, and Differentiation Potential)
5. Background 
6. Materials and methods
6.1. Cells culture
6.2. Preparation of cell adhesion surfaces
6.3. Flow cytometry analysis6.4. hMSCs adhesion assay
6.5. hBMSCs proliferation assay
6.6. Western blot analysis
6.7. Immunofluorescence staining
6.8. Fractionation,deglycosylation, and membrane proteins of hMSCs
6.9. Permethylation of N-linked glycans
6.10. MALD-TOF MS analysis 
6.11. Scanning electron microscope (SEM) 
6.12. Adipogenesis and osteogenesis of hMSCs
6.13. Quantitative real-time polymerase chain reaction (qRT-PCR) 
6.14. Statistical analysis
7. Results 
7.1. Control of integrin-mediated behavior in hBMSCs on PS-MBP-bFGF 
7.2. Functional analysis of hBMSCs on PS-MBP-bFGF
7.3. Relative quantitation of N-linked glycans on hMSCs
7.4. Analysis of sialylated N-linked glycans
7.5. Characterization of hMSCs on PS-MBP-bFGF
7.6. Cytoskeletal organization of hMSCs on surfaces
7.7. Cytoplasmic projection morphology of hMSCs on adhesion surfaces
7.8. Differentiation properties of hMSCs on MBP-bFGF and FN surfaces
8. Discussion 

III. Three-Dimensional (3D) clustering of hMSCs cultured on PS-MBP-bFGF enhances Stem Cell function 
III-1. A synergistic therapeutic effect of AngioclusterTM with angiopoietin-1 in ischemic hindlimbs
9. Background 
10. Materials and methods
10.1. hASCs culture and formation of Angiocluster TM
10.2. Cell viability assay
10.3. Flow cytometry analysis
10.4. Gene expression using polymerase chain reaction (PCR) 
10.5. Western blot analysis 
10.6. Human angiogenic protein analysis 
10.7. Preparation of the experimental mouse ischemia model) 
10.8. Treatment of limb ischemia
10.9. Immunofluorescence staining for angiogenesis of implants in ischemia mice 
10.10. Histological examination for ischemic hindlimb muscles 
10.11. Statistical analysis 
11. Results 
11.1. Characterization of monolayer hASC and AngioclusterTM 
11.2. Hypoxic induction and survival of AC
11.3. Production angiogenic factors by hASCs in AC
11.4. Improvement of ischemic limb salvage by transplantation of AC with Ang-1
11.5. Angiogenic and arteriogenic efficacy in ischemic limbs 
11.6. ACs with Ang-1 stimulates angiogenesis via improvement of the ability to paracrine and differentiation into vessel cells, in ischemic areas
11.7. The synergistic angiogenic effect of AC with Ang-1
12. Discussion  

III-2. Chondrogenesis potential in hBMSCs 3D in vitro model
13. Background
14. Materials and met
14.1. Cell culture and chondrogenic differentiation
14.2. Biochemical analysis
14.3. Quantitative real-time RT-PCR
14.4. Histology and immune florescent staining
14.5. Statistical analysis
15. Results 
15.1. Formation of 3D cell mass vs. pellet
15.2. Effects of 3D cell mass vs. pellet on cell proliferation and extracellular matrix synthesis 
15.3. Influences of 3DCM vs. pellet on gene expression profile of differentiating hBMSCs
16. References

 


주제어
Mesenchymal stem cell, Recombinant protein, Growth factor immobilization, Cell signaling, Cell adhesion, Cell differentiation, 3D cell mass (3DCM), Angiogenesis


List of Articles
번호 제목 발행년 조회 수
공지 ! 논문 정보 제공 게시판입니다.   11471
60 15 유전학 CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells 2016  252
59 1 윤리학 형사사법정보의 이용,제공 실태 및 입법적 개선방안 / 김기범 2016  162
58 9 보건의료 결핵환자의 인권향상을 위한 법적 고찰 / 이세경 2016  264
57 10 성/젠더 위해 의료사건 예방을 위한 의료감정의 계량적 접근 / 윤성철 2016  360
56 13 인구 한국 이주법제의 변천과 전망 / 최윤철 2016  159
55 18 인체실험 인간 유도만능 줄기세포로부터 유래된 신경세포구를 이용한 망막전구세포의 분화 및 생존에 관한 연구 / 윤철민 2016  261
54 18 인체실험 Improved Transfection Efficiency and Metabolic Activity in Human Embryonic Stem Cell Using Non-Enzymatic Method / 황인규 2016  224
» 18 인체실험 재생의학 기술 개발을 위한 세포접착 제어를 통한 중간엽 줄기세포의 기능 조절 연구 / 강정미 2016  548
52 18 인체실험 인간 배아줄기세포 유래의 혈액모세포 및 기능성 혈관세포 분화 방법과 특성 연구/ 길창현 2016  360
51 18 인체실험 Genetic Comparison of Stemness of Human Umbilical Cord and Dental Pulp / 김현옥 2016  143
50 15 유전학 (Nature) 줄기세포 노화에 따른 Hoxa9 유전자 의존성 2016  304
49 14 재생산 기술 일본「재생의료안전법」이 한국 생명윤리 관련 규제에 주는 시사점 / 김보배 2015  418
48 19 장기 조직 이식 의료용 생체재료 및 응용 : 생체재료를 이용한 줄기세포의 운명 조절기술 / 이은경 2015  371
47 9 보건의료 Applying a Global Justice Lens to Health Systems Research Ethics: An Initial Exploration 2015  62
46 18 인체실험 Gamete Donor Consent and Human Embryonic Stem Cell Research 2015  217
45 18 인체실험 줄기세포 치료제의 해외시술에 대한 형사적 책임성부 검토 / 류동훈 2015  262
44 9 보건의료 환자의 안전과 환자안전법제에 관한 고찰 / 신은주 2015  231
43 9 보건의료 환자안전법과 임상윤리에 관한 고찰 / 박재훈 2015  222
42 9 보건의료 환자안전에 관한 비교법적 연구 / 김정오 외 2015  172
41 18 인체실험 패널토론을 적용한 대학생의 생명윤리 의사결정에 나타난 의사결정 변화 양상과 내용 분석 / 문성채 2015  268