Cell Research (2013) 23:1–2. doi:10.1038/cr.2013.4; published
online 3 January 2013
원문 : http://www.nature.com/cr/journal/v23/n1/pdf/cr20134a.pdf
(해당 자료의 원문을 원하시면 메일로 신청해주시기 바랍니다. lib@nibp.kr)
저자 Dangsheng Li : 1Deputy Editor-in-Chief, Cell Research, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
dsli@sibs.ac.cn
사이트 바로가기 : http://www.nature.com/cr/journal/v23/n1/full/cr20134a.html?WT.mc_id=TOC_CR_1301_stemcells
Stem cells hold the remarkable capacity of self-renewal and differentiation into more specialized cell lineages, and thus constitute a promising resource in regenerative medicine for the generation of appropriate cell types in cell replacement therapy. Stem cell research, accordingly, has become a highly vigorous and rapidly evolving field in life sciences, highlighted by the 2012 Nobel Prize in Physiology or Medicine awarded to Shinya Yamanaka and John Gurdon, for their ground-breaking works in reprogramming cell fates1. As a general interest life science journal, Cell Research has enjoyed a phase of rapid growth in the past several years, as shown by the dramatic improvement in the scientific quality of papers published in the journal as wells as its broadening impact within the scientific community. Along the way, the field of stem cell biology has naturally become an important research area covered by papers published in Cell Research2. For instance, in the past year of 2012, Cell Research has published a number of important papers related to the stem cell field, covering diverse aspects and topics such as induced pluripotent stem (iPS) cells3,4,5,6,7, mechanistic studies of pluripotency and differentiation8,9,10,11, modeling of human diseases using stem cell-based systems6,12, direct reprogramming of somatic cells to other cell types without passing through an pluripotent intermediate13,14,15,16, as well as neural crest stem cells17 and cancer stem cells18,19,20.
References
- Abbott A. Cell rewind wins medicine Nobel. Nature 2012; 490:151–152. | Article | PubMed |
- Li D. A special issue on cell signaling, disease, and stem cells. Cell Res 2012; 22:1–2. | Article | PubMed |
- Xu H, Yi BA, Wu H, et al. Highly efficient derivation of ventricular cardiomyocytes from induced pluripotent stem cells with a distinct epigenetic signature. Cell Res 2012; 22:142–154. | Article | PubMed |
- Panopoulos AD, Yanes O, Ruiz S, et al. The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res 2012; 22:168–177. | Article | PubMed |
- Cao N, Liu Z, Chen Z, et al. Ascorbic acid enhances the cardiac differentiation of induced pluripotent stem cells through promoting the proliferation of cardiac progenitor cells. Cell Res 2012; 22:219–236. | Article | PubMed |
- Wang Y, Zheng CG, Jiang Y, et al. Genetic correction of β-thalassemia patient-specific iPS cells and its use in improving hemoglobin production in irradiated SCID mice. Cell Res 2012; 22:637–648. | Article | PubMed |
- Wang F, Yin Y, Ye X, et al. Molecular insights into the heterogeneity of telomere reprogramming in induced pluripotent stem cells. Cell Res 2012; 22:757–768. | Article | PubMed |
- Ding J, Xu H, Faiola F, Ma'ayan A, Wang J. Oct4 links multiple epigenetic pathways to the pluripotency network. Cell Res 2012; 22:155–167. | Article | PubMed |
- Patterson M, Chan DN, Ha I, et al. Defining the nature of human pluripotent stem cell progeny. Cell Res 2012; 22:178–193. | Article | PubMed |
- Wang C, Tang X, Sun X, et al. TGFβ inhibition enhances the generation of hematopoietic progenitors from human ES cell-derived hemogenic endothelial cells using a stepwise strategy. Cell Res 2012; 22:194–207. | Article | PubMed |
- Gwak J, Hwang SG, Park HS, et al. Small molecule-based disruption of the Axin/β-catenin protein complex regulates mesenchymal stem cell differentiation. Cell Res 2012; 22:237–247. | Article | PubMed |
- Bueno C, Montes R, Melen GJ, et al. A human ESC model for MLL-AF4 leukemic fusion gene reveals an impaired early hematopoietic-endothelial specification. Cell Res 2012; 22:986–1002. | Article | PubMed |
- Sheng C, Zheng Q, Wu J, et al. Direct reprogramming of Sertoli cells into multipotent neural stem cells by defined factors. Cell Res 2012; 22:208–218. | Article | PubMed | CAS |
- Liu X, Li F, Stubblefield EA, et al. Direct reprogramming of human fibroblasts into dopaminergic neuron-like cells. Cell Res 2012; 22:321–332. | Article | PubMed |
- Meng F, Chen S, Miao Q, et al. Induction of fibroblasts to neurons through adenoviral gene delivery. Cell Res 2012; 22:436–440. | Article | PubMed |
- Sheng C, Zheng Q, Wu J, et al. Generation of dopaminergic neurons directly from mouse fibroblasts and fibroblast-derived neural progenitors. Cell Res 2012; 22:769–772. | Article | PubMed |
- Achilleos A, Trainor PA. Neural crest stem cells: discovery, properties and potential for therapy. Cell Res 2012; 22:288–304. | Article | PubMed |
- Tang DG. Understanding cancer stem cell heterogeneity and plasticity. Cell Res 2012; 22:457–472. | Article | PubMed |
- Chen T, Yang K, Yu J, et al. Identification and expansion of cancer stem cells in tumor tissues and peripheral blood derived from gastric adenocarcinoma patients. Cell Res 2012; 22:248–258. | Article | PubMed |
-
Hou Y, Zou Q, Ge R, Shen F, Wang Y. The critical role of CD133+CD44+/high tumor cells in hematogenous metastasis of liver cancers. Cell Res 2012; 22:259–272. | Article | PubMed |
원문 : http://www.nature.com/cr/journal/v23/n1/pdf/cr20134a.pdf
(해당 자료의 원문을 워하시면 메일로 신청해주시기 바랍니다. lib@nibp.kr)